The accreditors of this session require that you periodically check in to verify that you are still attentive.
Please click the button below to indicate that you are.
Please note that the account you create here is different than your Keystone Symposia account at www.keystonesymposia.org used to register for our multi-day conferences and is uniquely for viewing our virtual content.
Role of Lactobacillus iners in the Vaginal Microbiota
Free
Standard Price
This product is also available as part of the following products:
The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be identified in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome, indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine the exact role of this species and its relationship with the host.
Cheleka AM Mpande, One B Dintwe, Munyaradzi Musvosvi, Simbarashe Mabwe, Nicole Bilek, Mark Hatherill, Elisa Nemes and Thomas J Scriba and the SATVI Clinical Immunology Team…
Understanding how different cell types recognize and respond to danger-associated molecular patterns (DAMPs) could lead to a better understanding of basic mechanisms of pain plasticity and lead to new therapeutic insights…
Privacy Policy Update: We value your privacy and want you to understand how your information is being used. To make sure you have current and accurate information about this sites privacy practices please visit the privacy center by clicking here.