To view this video content in its entirety, click on the "Access Content" button and login to your account.

If you do not have an account, register for free.

Please note that the account you create here is different than your Keystone Symposia account at used to register for our multi-day conferences and is uniquely for viewing our virtual content.

  2      0

In vivo Methods to Characterize and Design Regulatory sRNAs in Bacteria

In vivo Methods to Characterize and Design Regulatory sRNAs in Bacteria

Regulatory RNAs enable bacteria to dynamically respond to stresses caused by changes in environmental conditions. Specifically, bacterial small RNAs, a class of RNA regulators, exert dynamic control on complex networks by regulating gene expression. Understanding their functions is a goal in both medicine and metabolic engineering given their relevance to pathogenesis and their potential to manage global regulatory networks that affect biological production of industrially-relevant compounds. Given the importance of molecular structure to RNA functioning, fundamental sRNA characterization and applied engineering efforts depend heavily on the understanding and design of their specific shapes. Specifically, knowledge of the RNA structural landscape supports the identification of interfaces relevant to regulation. In this talk, we will describe the development of a high throughput tool that allows for the simultaneous in vivo characterization of thousands of potential interacting interfaces in RNA molecules, as determined based on their molecular accessibility. We will describe how RNA structural insights obtained from this synthetic probing approach can be used in the functional characterization of newly discovered RNAs and in the rational design of bacterial sRNAs to achieve a tunable gradient of global control for metabolic engineering applications.

This Keystone Symposia SciTalk was made possible by a grant from

custom image